Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Zool ; 70(1): 24-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476130

RESUMO

Endotherms recently expanding to cold environments generally exhibit strong physiological acclimation to sustain high body temperature. During this process, gut microbes likely play a considerable role in host physiological functions, including digestion and thermogenesis. The light-vented bulbul Pycnonotus sinensis represents one such species. It used to be restricted to the Oriental realm but expanded its distribution range north to the Palearctic areas during the past few decades. Here, we explored the seasonal dynamics of the resting metabolic rate (RMR) and microbiota for local and newly colonized populations of the species. Our results showed that the mass-adjusted RMR and body mass were positively correlated with latitude variations in both seasons. Consistently, the gut microbiota showed a corresponding variation to the northern cold environments. In the two northern populations, the alpha diversity decreased compared with those of the two southern populations. Significant differences were detected in dominant phyla, such as Firmicutes, Bacteroidetes, Proteobacteria, and Desulfobacterota in both seasons. The core microbiota showed geographic differences in the winter, including the elevated relative abundance of 5 species in northern populations. Finally, to explore the link between microbial communities and host metabolic thermogenesis, we conducted a correlation analysis between microbiota and mass-adjusted RMR. We found that more genera were significantly correlated with mass-adjusted RMR in the wintering season compared to the breeding season (71 vs. 23). These results suggest that microbiota of the lighted-vented bulbul linked with thermogenesis in diversity and abundance under northward expansion.

2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873033

RESUMO

Parallel evolution can be expected among closely related taxa exposed to similar selective pressures. However, parallelism is typically stronger at the phenotypic level, while genetic solutions to achieve these phenotypic similarities may differ. For polygenic traits, the availability of standing genetic variation (i.e., heterozygosity) may influence such genetic nonparallelism. Here, we examine the extent to which high-elevation adaptation is parallel-and whether the level of parallelism is affected by heterozygosity-by analyzing genomes of 19 Paridae species distributed across East Asia with a dramatic east-west elevation gradient. We find that western highlands endemic parids have consistently lower levels of heterozygosity-likely the result of late-Pleistocene demographic contraction-than do parids found exclusively in eastern lowlands, which remained unglaciated during the late Pleistocene. Three widespread species (east to west) have high levels of heterozygosity similar to that observed in eastern species, although their western populations are less variable than eastern ones. Comparing genomic responses to extreme environments of the Qinghai-Tibet Plateau, we find that the most differentiated genomic regions between each high-elevation taxon and its low-elevation relative are significantly enriched for genes potentially related to the oxygen transport cascade and/or thermogenesis. Despite no parallelism at particular genes, high similarity in gene function is found among comparisons. Furthermore, parallelism is not higher in more heterozygous widespread parids than in highland endemics. Thus, in East Asian parids, parallel functional response to extreme elevation appears to rely on different genes, with differences in heterozygosity having no effect on the degree of genetic parallelism.


Assuntos
Altitude , Distribuição Animal , Mudança Climática , Genômica , Aves Canoras/genética , Aves Canoras/fisiologia , Animais , Evolução Biológica , Ásia Oriental , Variação Genética , Genoma
3.
PLoS Genet ; 16(12): e1009270, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370292

RESUMO

Skeletal muscle plays a central role in regulating glucose uptake and body metabolism; however, highland hypoxia is a severe challenge to aerobic metabolism in small endotherms. Therefore, understanding the physiological and genetic convergence of muscle hypoxia tolerance has a potential broad range of medical implications. Here we report and experimentally validate a common physiological mechanism across multiple high-altitude songbirds that improvement in insulin sensitivity contributes to glucose homeostasis, low oxygen consumption, and relative activity, and thus increases body weight. By contrast, low-altitude songbirds exhibit muscle loss, glucose intolerance, and increase energy expenditures under hypoxia. This adaptive mechanism is attributable to convergent missense mutations in the BNIP3L gene, and METTL8 gene that activates MEF2C expression in highlanders, which in turn increases hypoxia tolerance. Together, our findings from wild high-altitude songbirds suggest convergent physiological and genetic mechanisms of skeletal muscle in hypoxia resistance, which highlights the potentially medical implications of hypoxia-related metabolic diseases.


Assuntos
Adaptação Fisiológica , Altitude , Evolução Molecular , Consumo de Oxigênio , Transcriptoma , Animais , Peso Corporal , Tentilhões , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Músculo Esquelético/metabolismo
4.
RSC Adv ; 10(31): 17951-17954, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35517216

RESUMO

Herein, based on the strategy of synergetic catalysis, we report a cobalt-based coordination polymer PEI6-Co. As a heterogeneous catalyst, PEI6-Co shows a selectivity of 95% and a yield of 1170 mmol g-1 for visible-light-driven CO2-to-CO conversion in a water containing system, which is almost 2.8 times that of the mononuclear cobalt catalyst CoL1 and is comparable to that of the dinuclear cobalt catalyst Co2L.

5.
BMC Evol Biol ; 19(1): 161, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370783

RESUMO

BACKGROUND: Geological events and climatic changes played important roles in shaping population differentiation and distribution within species. In China, populations in many species have contracted and expanded responding to environmental changes with the uplift of the Qinghai-Tibet Plateau (QTP) and glacial cycles during Pleistocene. In this study, we analysed the population structure of Godlewski's Bunting, Emberiza godlewskii, to determine the effects of major historical events, geographic barriers and past climatic changes on phylogenetic divergence and historical demographic dynamics of this species. RESULTS: A phylogeny based on concatenated mitochondrial and nuclear DNA datasets show two (northern and southern) clades approximately diverged 3.26 million years ago (Ma). The West Qinling Mountains serve as a dividing line between the two lineages. Both lineages experienced a recent demographic expansion during interglacial periods (marine isotope stages (MISs) 2-6). Bayesian skyline plots and the results of ecological niche modelling suggested a more intensive expansion of the northern lineage during the late Pleistocene, whereas the southern lineage was comparatively mild in population growth. CONCLUSIONS: Our results provide insights into the distribution patterns of avian taxa and the possible mechanisms for a south and north divergence model in China. The deep divergence may have been shaped by the uplift of the QTP. Habitat preferences might have facilitated the lineage divergence for E. godlewskii. Moreover, the West Qinling Mountains act as a dividing line between the two lineages, indicating a novel phylogeographic pattern of organisms in China. The difference in population expansion mode between two lineages resulted from different effects caused by the climate of the LGM and the subsequent habitat changes accompanying the arrival of a colder climate in northern and southern regions of China.


Assuntos
Ecossistema , Variação Genética , Passeriformes/genética , Animais , Teorema de Bayes , China , DNA Mitocondrial/genética , Evolução Molecular , Genes Mitocondriais , Deriva Genética , Funções Verossimilhança , Filogenia , Filogeografia , Especificidade da Espécie , Tibet
6.
BMC Evol Biol ; 18(1): 50, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636000

RESUMO

BACKGROUND: South China encompasses complex and diverse landforms, giving rise to high biological diversity and endemism from the Hengduan Mountains to Taiwan Island. Many species are widely distributed across South China with similar disjunct distribution patterns. To explore the causes of these disjunct distribution patterns and their genetic consequences, we investigated the endemic species Père David's Chinese Vole (Eothenomys melanogaster) by integrating geological and ecological factors. We analysed the genetic structure and divergence time of E. melanogaster based on fast-evolving mitochondrial and nuclear markers using Bayesian trees and coalescent species tree approaches. Historical scenarios of distribution range and demography were reconstructed based on spatial interpolations of genetic diversity and distance, extended Bayesian skyline plots, phylogeographic diffusion analysis, and ecological niche modelling (ENM) during different periods. We also assessed the relationships between geographical distance/ecological vicariance and genetic distance (isolation by distance, IBD; isolation by environment, IBE). RESULTS: The genetic analysis revealed three deeply divergent clades-Southeast, Southwest and Central clades, centred on the Wuyi Mountains, the Yunnan-Guizhou Plateau (YGP) and the mountains around the Sichuan Basin, respectively-that have mostly developed since the Pleistocene. IBD played an important role in early divergence, and geological events (sedimentation of plains and linking of palaeo-rivers) and IBE further reinforced genetic differentiation. ENM shows the importance of suitable habitats and elevations. CONCLUSIONS: Our results suggest that the primary cause of the disjunct distribution in E. melanogaster is the high dependence on middle-high-altitude habitat in the current period. Mountains in the occurence range have served as "sky islands" for E. melanogaster and hindered gene flow. Pleistocene climatic cycles facilitated genetic admixture in cold periods and genetic diversification in warm periods for inland clades. During cold periods, these cycles led to multiple colonization events between the mainland and Taiwan and erased genetic differentiation.


Assuntos
Arvicolinae/fisiologia , Biodiversidade , Animais , Arvicolinae/genética , Teorema de Bayes , Núcleo Celular/genética , China , DNA Mitocondrial/genética , Demografia , Variação Genética , Geografia , Ilhas , Filogenia , Filogeografia , Especificidade da Espécie , Taiwan , Fatores de Tempo
7.
Sci Rep ; 7: 46127, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393882

RESUMO

The underlying mechanisms that allow the Hengduan Mountains (HDM), the terrestrial biodiversity centre of China, to harbour high levels of species diversity remain poorly understood. Here, we sought to explore the biogeographic history of the endemic rat, Niviventer andersoni species complex (NASC), and to understand the long-term persistence of high species diversity in this region. In contrast to previous studies that have proposed regional refuges in eastern or southern of the HDM and emphasized the influence of climatic oscillations on local vertebrates, we found that HDM as a whole acted as refuge for the NASC and that the historical range shifts of NASC mainly occurred in the marginal regions. Demographic analyses revealed slight recent population decline in Yunnan and south-eastern Tibet, whereas of the populations in Sichuan and of the entire NASC were stable. This pattern differs greatly from classic paradigms of temperate or alpine and holarctic species. Interestingly, the mean elevation, area and climate of potential habitats of clade a (N. excelsior), an alpine inhabitant, showed larger variations than did those of clade b (N. andersoni), a middle-high altitude inhabitant. These species represent the evolutionary history of montane small mammals in regions that were less affected by the Quaternary climatic changes.


Assuntos
Biodiversidade , Animais , Teorema de Bayes , China , DNA Mitocondrial/genética , Demografia , Fósseis , Variação Genética , Geografia , Filogenia , Ratos , Especificidade da Espécie , Fatores de Tempo
8.
BMC Ecol ; 17(1): 17, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427386

RESUMO

BACKGROUND: Understanding whether species' elevational range is shifting in response to directional changes in climate and whether there is a predictable pattern in that response is one of the major challenges in ecology. However, so far very little is known about the distributional responses of subtropical species to climate change, especially for small mammals. In this study, we examined the elevational range shifts at three range points (upper and lower range limits and abundance-weighted range centre) of rodents over a 30-year period (1986 to 2014-2015), in a subtropical forest of Southwest China. We also examined the influences of four ecological traits (body mass, habitat breadth, diet and daily activity pattern) on the upslope shifts in species' abundance-weighted range centres. RESULTS: Despite the warming trend between 1986 and 2015, the 11 rodent species in analysis displayed heterogeneous dynamics at each of the three range points. Species which have larger body sizes and narrower habitat breadths, show both diurnal and nocturnal activities and more specialized dietary requirements, are more likely to exhibit upslope shifts in abundance-weighted range centres. CONCLUSIONS: Species' distributional responses can be heterogeneous even though there are directional changes in climate. Our study indicates that climate-induced alleviation of competition and lag in response may potentially drive species' range shift, which may not conform to the expectation from climate change. Difference in traits can lead to different range dynamics. Our study also illustrates the merit of multi-faceted assessment in studying elevational range shifts.


Assuntos
Ecossistema , Roedores/fisiologia , Altitude , Distribuição Animal , Animais , Mudança Climática , Feminino , Masculino , Dinâmica Populacional , Roedores/classificação
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(3 Pt 2): 037401, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15089448

RESUMO

A theory is developed that is suitable for describing a two-species thermalization process in a plasma with parameters suitable for recombination to take place. Recombining plasmas have recently been produced using positrons and antiprotons [M. Amoretti et al., Nature (London) 419, 456 (2002); G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002)]. The theory is not restricted to large Coulomb logarithm values, and correspondence with prior theory is shown in the limit of large Coulomb logarithm values. The theory applies for two plasma species, each having a Maxwellian velocity distribution and being weakly correlated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...